Be/W mixed material experiments

M. J. Baldwin, R. P. Doerner and D. Nishijima Center for Energy Research, University of California – San Diego

K. Ertl, J. Roth, Ch. Linsmeier, K. Schmid and A. Wiltner Max-Plank Institute for Plasmaphysics, Garching, Germany

Motivation

- UC San Diego PISCES and EFDA are investigating the influence of Be plasma impurities on exposed materials interactions relevant to ITER.
- The ITER design: Be first-wall,W divertor, C (graphite) strike points.
- Diverted plasma expected to be 'dirty': Eroded Be impurity conc. up to 10 %.
- Amongst others, Be/W PMI is an issue.

PISCES-B can investigate Be-W PMI relevent to ITER divertor

Be layers on plasma exposed W surfaces?

- Be can alloy with W
- W structural integrity
 is reduced at significantly
 lower temperatures.
 Liq. phase precipitates at

Be₂W ~ 2200
$$^{\circ}$$
C Be₁₂W ~ 1500 $^{\circ}$ C Be₂₂W ~ 1300 $^{\circ}$ C ■

ITER should be concerned about these alloys since little PMI data on Be-W exists.

From H. Okamoto and L.E. Tanner, in "Phase Diagrams of Binary Tungsten Alloys", Ed. S.V. Naidu and P. Rao, Indian Institute of Metals, Calcutta, 1991.

Inner wall coating (97%W, 3%O) /(4% W, 95% Be, 1%O) Be₂₂W?

Crucible wall fragments from Be rich failure zone (9% W, 70% Be, 14% C, 7% O) Be₁₂W?

Alloy formation studies (US-EU collaboration) 105 =

230 nm deposited W

- No visible reaction up to
- Polished Be substrate at 2008
- >> BANHELASIAS TAPOLISTUM up Be/Woodboyfand by/6 boy anito the surface RBS ion beam analysis
 - H (1 MeV)

Is layer growth diffusion limited?

Reaction controlled by chemical potential or diffusion not clear.

A. Vasina et.al, Russian Metally, 1(1974)119.

- After 600 min the whole layer is transformed into Be₁₂W
- ➤ The Be₁₂W phase seems thermodynamically more stable than Be₂W and Be₂₂W
- \triangleright D_{800 °C} ~ 1.7 10⁻¹³ cm²/s

800°. 120'

PISCES plasma exposure induces beryllides (570-1050 °C).

- XPS confirms beryllides (E.g. Wiltner et al. J. Nucl. Mater. 337-339 (2005) 951)
- ➤ AES Concentrations are close to Be₁₂W
- Need to investigate PMI layer growth
- Will diffusion limit layer growth under plasma operation?

Retention and blistering w/ & w/o BeW layers

- Initial results suggest that Be impurity flux inhibits blistering. Why?
- ➤ Retention in Be coated W is is found to be comparable to retention in unblistered W at temperatures of 300 °C and 1000 °C.

Summary

- Be-W PMI not well understood. Important for ITER & JET.
- ➢ Be-W interaction produces low melting point (< 1750 °C) phases.</p>
- The Be₁₂W phase seems more stable than Be₂W and Be₂₂W.
 Observed with WDS, AES, XPS (UCSD) and RBS (IPP).
- ➤ Be-W layer growth occurs at (~800 °C). Possibly diffusion limited.

 Activation energy to be determined (IPP) by further phase formation vs temperature studies.
- PMI can induce beryllides at even lower temperature (570 °C) Layer growth studies are required (PISCES). Is PMI diffusion limited or kinetics controlled?
- Be-W layer reduces blistering/retention (~300 ℃). No blistering/retention (~ 1000 ℃). More data needed. (PISCES) Retention consistent with unblistered W.